Free AI-assisted K12 Learning

Python for Data Science Basics


 Introduces Python for data science basics through engaging, interactive exercises.

 Description : This course introduces Python for data science basics, teaching students how to manipulate data and create simple visualizations through interactive exercises.

Category : Coding & Engineering
Age : 10+
Difficulty Level : Normal

 Curriculum :
          Module 1: Introduction to Python Programming

Section 1: Introduction and Setup
- Lesson 1: What is Python and Why Learn It?
  - Module 1, Section 1, Lesson 1 What is Python and Why Learn It?
- Lesson 2: Installing Python and Setting Up the Environment
  - Module 1, Section 1, Lesson 2 Installing Python and Setting Up the Environment

Section 2: Basic Syntax and Commands
- Lesson 1: Understanding Python Syntax Basics
  - Module 1, Section 2, Lesson 1 Understanding Python Syntax Basics
- Lesson 2: Writing Your First Python Commands
  - Module 1, Section 2, Lesson 2 Writing Your First Python Commands

Section 3: Variables and Data Types
- Lesson 1: Introduction to Variables
  - Module 1, Section 3, Lesson 1 Introduction to Variables
- Lesson 2: Exploring Basic Data Types in Python
  - Module 1, Section 3, Lesson 2 Exploring Basic Data Types in Python

Section 4: Simple Input and Output
- Lesson 1: Reading User Input in Python
  - Module 1, Section 4, Lesson 1 Reading User Input in Python
- Lesson 2: Displaying Output on the Screen
  - Module 1, Section 4, Lesson 2 Displaying Output on the Screen

Section 5: Basic Debugging and Error Handling
- Lesson 1: Recognizing Common Python Errors
  - Module 1, Section 5, Lesson 1 Recognizing Common Python Errors
- Lesson 2: Basic Debugging Techniques for Beginners
  - Module 1, Section 5, Lesson 2 Basic Debugging Techniques for Beginners


Module 2: Working with Data Structures

Section 1: Lists and Tuples
- Lesson 1: Introduction to Lists
  - Module 2, Section 1, Lesson 1 Introduction to Lists
- Lesson 2: Understanding and Using Tuples
  - Module 2, Section 1, Lesson 2 Understanding and Using Tuples

Section 2: Dictionaries and Sets
- Lesson 1: Introduction to Dictionaries
  - Module 2, Section 2, Lesson 1 Introduction to Dictionaries
- Lesson 2: Working with Sets in Python
  - Module 2, Section 2, Lesson 2 Working with Sets in Python

Section 3: String Manipulation Basics
- Lesson 1: Performing Basic String Operations
  - Module 2, Section 3, Lesson 1 Performing Basic String Operations
- Lesson 2: Mastering String Formatting
  - Module 2, Section 3, Lesson 2 Mastering String Formatting

Section 4: File Handling Basics
- Lesson 1: Opening and Reading Files in Python
  - Module 2, Section 4, Lesson 1 Opening and Reading Files in Python
- Lesson 2: Writing Data to Files
  - Module 2, Section 4, Lesson 2 Writing Data to Files

Section 5: Using Built-in Functions
- Lesson 1: Introduction to Map, Filter, and Reduce
  - Module 2, Section 5, Lesson 1 Introduction to Map, Filter, and Reduce
- Lesson 2: Learning List Comprehensions
  - Module 2, Section 5, Lesson 2 Learning List Comprehensions


Module 3: Data Manipulation Essentials

Section 1: Introduction to Data Manipulation
- Lesson 1: Understanding Data in Python
  - Module 3, Section 1, Lesson 1 Understanding Data in Python
- Lesson 2: Collecting Data from Different Sources
  - Module 3, Section 1, Lesson 2 Collecting Data from Different Sources

Section 2: Working with Data Collections
- Lesson 1: Sorting and Filtering Data
  - Module 3, Section 2, Lesson 1 Sorting and Filtering Data
- Lesson 2: Indexing and Slicing Data Collections
  - Module 3, Section 2, Lesson 2 Indexing and Slicing Data Collections

Section 3: Data Cleaning Techniques
- Lesson 1: Identifying Outliers and Inconsistent Data
  - Module 3, Section 3, Lesson 1 Identifying Outliers and Inconsistent Data
- Lesson 2: Handling Missing Data Effectively
  - Module 3, Section 3, Lesson 2 Handling Missing Data Effectively

Section 4: Simple Data Aggregation
- Lesson 1: Summarizing Data with Basic Techniques
  - Module 3, Section 4, Lesson 1 Summarizing Data with Basic Techniques
- Lesson 2: Aggregating Data: Count, Sum, and Average
  - Module 3, Section 4, Lesson 2 Aggregating Data: Count, Sum, and Average

Section 5: Introduction to Pandas for Beginners
- Lesson 1: Getting Started with the Pandas Library
  - Module 3, Section 5, Lesson 1 Getting Started with the Pandas Library
- Lesson 2: Creating Simple DataFrames and Series
  - Module 3, Section 5, Lesson 2 Creating Simple DataFrames and Series


Module 4: Creating Simple Data Visualizations

Section 1: Basics of Data Visualization
- Lesson 1: Understanding the Importance of Data Visualization
  - Module 4, Section 1, Lesson 1 Understanding the Importance of Data Visualization
- Lesson 2: Overview of Different Types of Graphs
  - Module 4, Section 1, Lesson 2 Overview of Different Types of Graphs

Section 2: Using Matplotlib for Graphs
- Lesson 1: Setting Up Matplotlib in Python
  - Module 4, Section 2, Lesson 1 Setting Up Matplotlib in Python
- Lesson 2: Creating Your First Simple Plot
  - Module 4, Section 2, Lesson 2 Creating Your First Simple Plot

Section 3: Plotting Bar and Line Graphs
- Lesson 1: Designing and Customizing Bar Charts
  - Module 4, Section 3, Lesson 1 Designing and Customizing Bar Charts
- Lesson 2: Crafting Clear and Informative Line Graphs
  - Module 4, Section 3, Lesson 2 Crafting Clear and Informative Line Graphs

Section 4: Visualizing Data Trends
- Lesson 1: Interpreting Trends in Data Visualizations
  - Module 4, Section 4, Lesson 1 Interpreting Trends in Data Visualizations
- Lesson 2: Customizing Plots to Highlight Trends
  - Module 4, Section 4, Lesson 2 Customizing Plots to Highlight Trends

Section 5: Interpreting Graphical Representations
- Lesson 1: Reading and Understanding Graphs
  - Module 4, Section 5, Lesson 1 Reading and Understanding Graphs
- Lesson 2: Communicating Data Insights Effectively
  - Module 4, Section 5, Lesson 2 Communicating Data Insights Effectively


Module 5: Project-Based Learning and Applications

Section 1: Mini Project Introduction
- Lesson 1: Understanding the Project Requirements
  - Module 5, Section 1, Lesson 1 Understanding the Project Requirements
- Lesson 2: Brainstorming Ideas for a Simple Data Project
  - Module 5, Section 1, Lesson 2 Brainstorming Ideas for a Simple Data Project

Section 2: Project Planning and Design
- Lesson 1: Planning Your Python Project Step-by-Step
  - Module 5, Section 2, Lesson 1 Planning Your Python Project Step-by-Step
- Lesson 2: Designing a Workflow for Data Handling and Visualization
  - Module 5, Section 2, Lesson 2 Designing a Workflow for Data Handling and Visualization

Section 3: Building a Data-Driven Application
- Lesson 1: Implementing Code to Manipulate Data
  - Module 5, Section 3, Lesson 1 Implementing Code to Manipulate Data
- Lesson 2: Creating Simple Visualizations for Your Application
  - Module 5, Section 3, Lesson 2 Creating Simple Visualizations for Your Application

Section 4: Testing and Debugging Projects
- Lesson 1: Debugging Your Data-Driven Application
  - Module 5, Section 4, Lesson 1 Debugging Your Data-Driven Application
- Lesson 2: Testing Data Accuracy and Visualization Outputs
  - Module 5, Section 4, Lesson 2 Testing Data Accuracy and Visualization Outputs

Section 5: Final Presentation and Review
- Lesson 1: Finalizing and Presenting Your Project
  - Module 5, Section 5, Lesson 1 Finalizing and Presenting Your Project
- Lesson 2: Reviewing Key Concepts and Reflecting on Learning
  - Module 5, Section 5, Lesson 2 Reviewing Key Concepts and Reflecting on Learning