Python for Data Science Basics
Introduces Python for data science basics through engaging, interactive exercises.
Description : This course introduces Python for data science basics, teaching students how to manipulate data and create simple visualizations through interactive exercises.
Category : Coding & Engineering
Age : 10+
Difficulty Level : Normal
Curriculum :
Module 1: Introduction to Python Programming Section 1: Introduction and Setup - Lesson 1: What is Python and Why Learn It? - Module 1, Section 1, Lesson 1 What is Python and Why Learn It? - Lesson 2: Installing Python and Setting Up the Environment - Module 1, Section 1, Lesson 2 Installing Python and Setting Up the Environment Section 2: Basic Syntax and Commands - Lesson 1: Understanding Python Syntax Basics - Module 1, Section 2, Lesson 1 Understanding Python Syntax Basics - Lesson 2: Writing Your First Python Commands - Module 1, Section 2, Lesson 2 Writing Your First Python Commands Section 3: Variables and Data Types - Lesson 1: Introduction to Variables - Module 1, Section 3, Lesson 1 Introduction to Variables - Lesson 2: Exploring Basic Data Types in Python - Module 1, Section 3, Lesson 2 Exploring Basic Data Types in Python Section 4: Simple Input and Output - Lesson 1: Reading User Input in Python - Module 1, Section 4, Lesson 1 Reading User Input in Python - Lesson 2: Displaying Output on the Screen - Module 1, Section 4, Lesson 2 Displaying Output on the Screen Section 5: Basic Debugging and Error Handling - Lesson 1: Recognizing Common Python Errors - Module 1, Section 5, Lesson 1 Recognizing Common Python Errors - Lesson 2: Basic Debugging Techniques for Beginners - Module 1, Section 5, Lesson 2 Basic Debugging Techniques for Beginners Module 2: Working with Data Structures Section 1: Lists and Tuples - Lesson 1: Introduction to Lists - Module 2, Section 1, Lesson 1 Introduction to Lists - Lesson 2: Understanding and Using Tuples - Module 2, Section 1, Lesson 2 Understanding and Using Tuples Section 2: Dictionaries and Sets - Lesson 1: Introduction to Dictionaries - Module 2, Section 2, Lesson 1 Introduction to Dictionaries - Lesson 2: Working with Sets in Python - Module 2, Section 2, Lesson 2 Working with Sets in Python Section 3: String Manipulation Basics - Lesson 1: Performing Basic String Operations - Module 2, Section 3, Lesson 1 Performing Basic String Operations - Lesson 2: Mastering String Formatting - Module 2, Section 3, Lesson 2 Mastering String Formatting Section 4: File Handling Basics - Lesson 1: Opening and Reading Files in Python - Module 2, Section 4, Lesson 1 Opening and Reading Files in Python - Lesson 2: Writing Data to Files - Module 2, Section 4, Lesson 2 Writing Data to Files Section 5: Using Built-in Functions - Lesson 1: Introduction to Map, Filter, and Reduce - Module 2, Section 5, Lesson 1 Introduction to Map, Filter, and Reduce - Lesson 2: Learning List Comprehensions - Module 2, Section 5, Lesson 2 Learning List Comprehensions Module 3: Data Manipulation Essentials Section 1: Introduction to Data Manipulation - Lesson 1: Understanding Data in Python - Module 3, Section 1, Lesson 1 Understanding Data in Python - Lesson 2: Collecting Data from Different Sources - Module 3, Section 1, Lesson 2 Collecting Data from Different Sources Section 2: Working with Data Collections - Lesson 1: Sorting and Filtering Data - Module 3, Section 2, Lesson 1 Sorting and Filtering Data - Lesson 2: Indexing and Slicing Data Collections - Module 3, Section 2, Lesson 2 Indexing and Slicing Data Collections Section 3: Data Cleaning Techniques - Lesson 1: Identifying Outliers and Inconsistent Data - Module 3, Section 3, Lesson 1 Identifying Outliers and Inconsistent Data - Lesson 2: Handling Missing Data Effectively - Module 3, Section 3, Lesson 2 Handling Missing Data Effectively Section 4: Simple Data Aggregation - Lesson 1: Summarizing Data with Basic Techniques - Module 3, Section 4, Lesson 1 Summarizing Data with Basic Techniques - Lesson 2: Aggregating Data: Count, Sum, and Average - Module 3, Section 4, Lesson 2 Aggregating Data: Count, Sum, and Average Section 5: Introduction to Pandas for Beginners - Lesson 1: Getting Started with the Pandas Library - Module 3, Section 5, Lesson 1 Getting Started with the Pandas Library - Lesson 2: Creating Simple DataFrames and Series - Module 3, Section 5, Lesson 2 Creating Simple DataFrames and Series Module 4: Creating Simple Data Visualizations Section 1: Basics of Data Visualization - Lesson 1: Understanding the Importance of Data Visualization - Module 4, Section 1, Lesson 1 Understanding the Importance of Data Visualization - Lesson 2: Overview of Different Types of Graphs - Module 4, Section 1, Lesson 2 Overview of Different Types of Graphs Section 2: Using Matplotlib for Graphs - Lesson 1: Setting Up Matplotlib in Python - Module 4, Section 2, Lesson 1 Setting Up Matplotlib in Python - Lesson 2: Creating Your First Simple Plot - Module 4, Section 2, Lesson 2 Creating Your First Simple Plot Section 3: Plotting Bar and Line Graphs - Lesson 1: Designing and Customizing Bar Charts - Module 4, Section 3, Lesson 1 Designing and Customizing Bar Charts - Lesson 2: Crafting Clear and Informative Line Graphs - Module 4, Section 3, Lesson 2 Crafting Clear and Informative Line Graphs Section 4: Visualizing Data Trends - Lesson 1: Interpreting Trends in Data Visualizations - Module 4, Section 4, Lesson 1 Interpreting Trends in Data Visualizations - Lesson 2: Customizing Plots to Highlight Trends - Module 4, Section 4, Lesson 2 Customizing Plots to Highlight Trends Section 5: Interpreting Graphical Representations - Lesson 1: Reading and Understanding Graphs - Module 4, Section 5, Lesson 1 Reading and Understanding Graphs - Lesson 2: Communicating Data Insights Effectively - Module 4, Section 5, Lesson 2 Communicating Data Insights Effectively Module 5: Project-Based Learning and Applications Section 1: Mini Project Introduction - Lesson 1: Understanding the Project Requirements - Module 5, Section 1, Lesson 1 Understanding the Project Requirements - Lesson 2: Brainstorming Ideas for a Simple Data Project - Module 5, Section 1, Lesson 2 Brainstorming Ideas for a Simple Data Project Section 2: Project Planning and Design - Lesson 1: Planning Your Python Project Step-by-Step - Module 5, Section 2, Lesson 1 Planning Your Python Project Step-by-Step - Lesson 2: Designing a Workflow for Data Handling and Visualization - Module 5, Section 2, Lesson 2 Designing a Workflow for Data Handling and Visualization Section 3: Building a Data-Driven Application - Lesson 1: Implementing Code to Manipulate Data - Module 5, Section 3, Lesson 1 Implementing Code to Manipulate Data - Lesson 2: Creating Simple Visualizations for Your Application - Module 5, Section 3, Lesson 2 Creating Simple Visualizations for Your Application Section 4: Testing and Debugging Projects - Lesson 1: Debugging Your Data-Driven Application - Module 5, Section 4, Lesson 1 Debugging Your Data-Driven Application - Lesson 2: Testing Data Accuracy and Visualization Outputs - Module 5, Section 4, Lesson 2 Testing Data Accuracy and Visualization Outputs Section 5: Final Presentation and Review - Lesson 1: Finalizing and Presenting Your Project - Module 5, Section 5, Lesson 1 Finalizing and Presenting Your Project - Lesson 2: Reviewing Key Concepts and Reflecting on Learning - Module 5, Section 5, Lesson 2 Reviewing Key Concepts and Reflecting on Learning