Basic Machine Learning Concepts in Python
Introduces basic machine learning concepts in Python through fun, project‑based activities.
Description : Introducing basic machine learning concepts in Python, this class uses simple algorithms and project‑based learning to spark interest in AI and data analysis.
Category : Coding & Engineering
Age : 10+
Difficulty Level : Normal
Curriculum :
Module 1: Python Fundamentals Section 1: Introduction to Python - Lesson 1: What is Python? Module 1, Section 1, Lesson 1: What is Python? - Lesson 2: Installing Python Module 1, Section 1, Lesson 2: Installing Python Section 2: Basic Python Syntax - Lesson 1: Python Syntax Essentials Module 1, Section 2, Lesson 1: Python Syntax Essentials - Lesson 2: Variables and Data Types Module 1, Section 2, Lesson 2: Variables and Data Types Section 3: Python Tools and Environment - Lesson 1: Using an IDE Module 1, Section 3, Lesson 1: Using an IDE - Lesson 2: Running Python Code Module 1, Section 3, Lesson 2: Running Python Code Section 4: Simple Operations in Python - Lesson 1: Arithmetic Operations Module 1, Section 4, Lesson 1: Arithmetic Operations - Lesson 2: Input and Output Module 1, Section 4, Lesson 2: Input and Output Section 5: Control Structures Basics - Lesson 1: If Statements in Python Module 1, Section 5, Lesson 1: If Statements in Python - Lesson 2: Loops with Python Module 1, Section 5, Lesson 2: Loops with Python Module 2: Data and Problem Understanding Section 1: Introduction to Data - Lesson 1: What is Data? Module 2, Section 1, Lesson 1: What is Data? - Lesson 2: Types of Data Module 2, Section 1, Lesson 2: Types of Data Section 2: Data Collection Basics - Lesson 1: Sources of Data Module 2, Section 2, Lesson 1: Sources of Data - Lesson 2: Simple Data Collection Techniques Module 2, Section 2, Lesson 2: Simple Data Collection Techniques Section 3: Introduction to Problem Solving - Lesson 1: Identifying Problem Statements Module 2, Section 3, Lesson 1: Identifying Problem Statements - Lesson 2: Breaking Down Problems into Steps Module 2, Section 3, Lesson 2: Breaking Down Problems into Steps Section 4: Getting to Know Simple Datasets - Lesson 1: Exploring Sample Datasets Module 2, Section 4, Lesson 1: Exploring Sample Datasets - Lesson 2: Reading Data with Python Module 2, Section 4, Lesson 2: Reading Data with Python Section 5: Data Visualization Fundamentals - Lesson 1: Introduction to Data Visualization Module 2, Section 5, Lesson 1: Introduction to Data Visualization - Lesson 2: Creating Simple Charts Module 2, Section 5, Lesson 2: Creating Simple Charts Module 3: Simple Machine Learning Concepts Section 1: What is Machine Learning? - Lesson 1: Defining Machine Learning Module 3, Section 1, Lesson 1: Defining Machine Learning - Lesson 2: Machine Learning in Everyday Life Module 3, Section 1, Lesson 2: Machine Learning in Everyday Life Section 2: Basic Concepts in Machine Learning - Lesson 1: Training and Testing Overview Module 3, Section 2, Lesson 1: Training and Testing Overview - Lesson 2: Features and Labels Module 3, Section 2, Lesson 2: Features and Labels Section 3: Algorithms at a Glance - Lesson 1: Simple Algorithm Concepts Module 3, Section 3, Lesson 1: Simple Algorithm Concepts - Lesson 2: Understanding Overfitting Module 3, Section 3, Lesson 2: Understanding Overfitting Section 4: Introduction to Classification - Lesson 1: What is Classification? Module 3, Section 4, Lesson 1: What is Classification? - Lesson 2: Simple Classification Example Module 3, Section 4, Lesson 2: Simple Classification Example Section 5: Introduction to Regression - Lesson 1: What is Regression? Module 3, Section 5, Lesson 1: What is Regression? - Lesson 2: Basic Regression Example Module 3, Section 5, Lesson 2: Basic Regression Example Module 4: Building Simple Models in Python Section 1: Dataset Preparation Basics - Lesson 1: Splitting Data into Training and Testing Module 4, Section 1, Lesson 1: Splitting Data into Training and Testing - Lesson 2: Preparing Data in Python Module 4, Section 1, Lesson 2: Preparing Data in Python Section 2: Creating a Simple Model - Lesson 1: Building a Model with Python Module 4, Section 2, Lesson 1: Building a Model with Python - Lesson 2: Understanding Model Components Module 4, Section 2, Lesson 2: Understanding Model Components Section 3: Evaluating Model Performance - Lesson 1: Introduction to Accuracy Module 4, Section 3, Lesson 1: Introduction to Accuracy - Lesson 2: Confusion Matrix Basics Module 4, Section 3, Lesson 2: Confusion Matrix Basics Section 4: Tuning a Simple Model - Lesson 1: Basic Model Tuning Concepts Module 4, Section 4, Lesson 1: Basic Model Tuning Concepts - Lesson 2: Testing Model Parameters Module 4, Section 4, Lesson 2: Testing Model Parameters Section 5: Improving Model Performance - Lesson 1: Simple Strategies for Improvement Module 4, Section 5, Lesson 1: Simple Strategies for Improvement - Lesson 2: Model Evaluation and Iteration Module 4, Section 5, Lesson 2: Model Evaluation and Iteration Module 5: Projects in Machine Learning Basics Section 1: Project Overview and Planning - Lesson 1: Understanding the Project Module 5, Section 1, Lesson 1: Understanding the Project - Lesson 2: Planning Steps for a Project Module 5, Section 1, Lesson 2: Planning Steps for a Project Section 2: Data Collection for Your Project - Lesson 1: Gathering Your Data Module 5, Section 2, Lesson 1: Gathering Your Data - Lesson 2: Exploring Your Data Module 5, Section 2, Lesson 2: Exploring Your Data Section 3: Developing Your Model - Lesson 1: Building Your Project Model Module 5, Section 3, Lesson 1: Building Your Project Model - Lesson 2: Testing Your Model Module 5, Section 3, Lesson 2: Testing Your Model Section 4: Presenting Your Findings - Lesson 1: Creating a Simple Report Module 5, Section 4, Lesson 1: Creating a Simple Report - Lesson 2: Sharing Your Results Module 5, Section 4, Lesson 2: Sharing Your Results Section 5: Final Review and Next Steps - Lesson 1: Reviewing Your Project Work Module 5, Section 5, Lesson 1: Reviewing Your Project Work - Lesson 2: Next Steps in Machine Learning Module 5, Section 5, Lesson 2: Next Steps in Machine Learning