Basic Machine Learning Concepts in Python
Introduces basic machine learning concepts in Python through fun, project‑based activities.
Description : Introducing basic machine learning concepts in Python, this class uses simple algorithms and project‑based learning to spark interest in AI and data analysis.
Category : Coding & Engineering
Age : 10+
Difficulty Level : Normal
Curriculum :
Module 1: Python Fundamentals
Section 1: Introduction to Python
- Lesson 1: What is Python?
Module 1, Section 1, Lesson 1: What is Python?
- Lesson 2: Installing Python
Module 1, Section 1, Lesson 2: Installing Python
Section 2: Basic Python Syntax
- Lesson 1: Python Syntax Essentials
Module 1, Section 2, Lesson 1: Python Syntax Essentials
- Lesson 2: Variables and Data Types
Module 1, Section 2, Lesson 2: Variables and Data Types
Section 3: Python Tools and Environment
- Lesson 1: Using an IDE
Module 1, Section 3, Lesson 1: Using an IDE
- Lesson 2: Running Python Code
Module 1, Section 3, Lesson 2: Running Python Code
Section 4: Simple Operations in Python
- Lesson 1: Arithmetic Operations
Module 1, Section 4, Lesson 1: Arithmetic Operations
- Lesson 2: Input and Output
Module 1, Section 4, Lesson 2: Input and Output
Section 5: Control Structures Basics
- Lesson 1: If Statements in Python
Module 1, Section 5, Lesson 1: If Statements in Python
- Lesson 2: Loops with Python
Module 1, Section 5, Lesson 2: Loops with Python
Module 2: Data and Problem Understanding
Section 1: Introduction to Data
- Lesson 1: What is Data?
Module 2, Section 1, Lesson 1: What is Data?
- Lesson 2: Types of Data
Module 2, Section 1, Lesson 2: Types of Data
Section 2: Data Collection Basics
- Lesson 1: Sources of Data
Module 2, Section 2, Lesson 1: Sources of Data
- Lesson 2: Simple Data Collection Techniques
Module 2, Section 2, Lesson 2: Simple Data Collection Techniques
Section 3: Introduction to Problem Solving
- Lesson 1: Identifying Problem Statements
Module 2, Section 3, Lesson 1: Identifying Problem Statements
- Lesson 2: Breaking Down Problems into Steps
Module 2, Section 3, Lesson 2: Breaking Down Problems into Steps
Section 4: Getting to Know Simple Datasets
- Lesson 1: Exploring Sample Datasets
Module 2, Section 4, Lesson 1: Exploring Sample Datasets
- Lesson 2: Reading Data with Python
Module 2, Section 4, Lesson 2: Reading Data with Python
Section 5: Data Visualization Fundamentals
- Lesson 1: Introduction to Data Visualization
Module 2, Section 5, Lesson 1: Introduction to Data Visualization
- Lesson 2: Creating Simple Charts
Module 2, Section 5, Lesson 2: Creating Simple Charts
Module 3: Simple Machine Learning Concepts
Section 1: What is Machine Learning?
- Lesson 1: Defining Machine Learning
Module 3, Section 1, Lesson 1: Defining Machine Learning
- Lesson 2: Machine Learning in Everyday Life
Module 3, Section 1, Lesson 2: Machine Learning in Everyday Life
Section 2: Basic Concepts in Machine Learning
- Lesson 1: Training and Testing Overview
Module 3, Section 2, Lesson 1: Training and Testing Overview
- Lesson 2: Features and Labels
Module 3, Section 2, Lesson 2: Features and Labels
Section 3: Algorithms at a Glance
- Lesson 1: Simple Algorithm Concepts
Module 3, Section 3, Lesson 1: Simple Algorithm Concepts
- Lesson 2: Understanding Overfitting
Module 3, Section 3, Lesson 2: Understanding Overfitting
Section 4: Introduction to Classification
- Lesson 1: What is Classification?
Module 3, Section 4, Lesson 1: What is Classification?
- Lesson 2: Simple Classification Example
Module 3, Section 4, Lesson 2: Simple Classification Example
Section 5: Introduction to Regression
- Lesson 1: What is Regression?
Module 3, Section 5, Lesson 1: What is Regression?
- Lesson 2: Basic Regression Example
Module 3, Section 5, Lesson 2: Basic Regression Example
Module 4: Building Simple Models in Python
Section 1: Dataset Preparation Basics
- Lesson 1: Splitting Data into Training and Testing
Module 4, Section 1, Lesson 1: Splitting Data into Training and Testing
- Lesson 2: Preparing Data in Python
Module 4, Section 1, Lesson 2: Preparing Data in Python
Section 2: Creating a Simple Model
- Lesson 1: Building a Model with Python
Module 4, Section 2, Lesson 1: Building a Model with Python
- Lesson 2: Understanding Model Components
Module 4, Section 2, Lesson 2: Understanding Model Components
Section 3: Evaluating Model Performance
- Lesson 1: Introduction to Accuracy
Module 4, Section 3, Lesson 1: Introduction to Accuracy
- Lesson 2: Confusion Matrix Basics
Module 4, Section 3, Lesson 2: Confusion Matrix Basics
Section 4: Tuning a Simple Model
- Lesson 1: Basic Model Tuning Concepts
Module 4, Section 4, Lesson 1: Basic Model Tuning Concepts
- Lesson 2: Testing Model Parameters
Module 4, Section 4, Lesson 2: Testing Model Parameters
Section 5: Improving Model Performance
- Lesson 1: Simple Strategies for Improvement
Module 4, Section 5, Lesson 1: Simple Strategies for Improvement
- Lesson 2: Model Evaluation and Iteration
Module 4, Section 5, Lesson 2: Model Evaluation and Iteration
Module 5: Projects in Machine Learning Basics
Section 1: Project Overview and Planning
- Lesson 1: Understanding the Project
Module 5, Section 1, Lesson 1: Understanding the Project
- Lesson 2: Planning Steps for a Project
Module 5, Section 1, Lesson 2: Planning Steps for a Project
Section 2: Data Collection for Your Project
- Lesson 1: Gathering Your Data
Module 5, Section 2, Lesson 1: Gathering Your Data
- Lesson 2: Exploring Your Data
Module 5, Section 2, Lesson 2: Exploring Your Data
Section 3: Developing Your Model
- Lesson 1: Building Your Project Model
Module 5, Section 3, Lesson 1: Building Your Project Model
- Lesson 2: Testing Your Model
Module 5, Section 3, Lesson 2: Testing Your Model
Section 4: Presenting Your Findings
- Lesson 1: Creating a Simple Report
Module 5, Section 4, Lesson 1: Creating a Simple Report
- Lesson 2: Sharing Your Results
Module 5, Section 4, Lesson 2: Sharing Your Results
Section 5: Final Review and Next Steps
- Lesson 1: Reviewing Your Project Work
Module 5, Section 5, Lesson 1: Reviewing Your Project Work
- Lesson 2: Next Steps in Machine Learning
Module 5, Section 5, Lesson 2: Next Steps in Machine Learning