Data Science and Artificial Intelligence for Teens
Covers data science and artificial intelligence applications, empowering teens to harness modern analytical tools.
Description : Focused on data science and artificial intelligence, this course teaches teens to analyze complex datasets and develop machine learning models using Python, TensorFlow, and other modern tools.
Category : Coding & Engineering
Age : 12+
Difficulty Level : Normal
Curriculum :
Module 1: Fundamentals of Data Science and AI Section 1: Introduction to Data Science - Lesson 1: What Is Data Science? - Module 1, Section 1, Lesson 1: What Is Data Science? - Lesson 2: Data Science in Everyday Life - Module 1, Section 1, Lesson 2: Data Science in Everyday Life Section 2: Introduction to Artificial Intelligence - Lesson 1: What Is Artificial Intelligence? - Module 1, Section 2, Lesson 1: What Is Artificial Intelligence? - Lesson 2: The History and Impact of AI - Module 1, Section 2, Lesson 2: The History and Impact of AI Section 3: Basic Concepts in Data Handling - Lesson 1: Understanding Data Types - Module 1, Section 3, Lesson 1: Understanding Data Types - Lesson 2: Collecting and Organizing Data - Module 1, Section 3, Lesson 2: Collecting and Organizing Data Section 4: Tools and Technologies Overview - Lesson 1: Overview of Python for Data Science - Module 1, Section 4, Lesson 1: Overview of Python for Data Science - Lesson 2: Introduction to Essential Data Tools - Module 1, Section 4, Lesson 2: Introduction to Essential Data Tools Section 5: Ethics and Responsibility in Data Science - Lesson 1: Understanding Data Ethics - Module 1, Section 5, Lesson 1: Understanding Data Ethics - Lesson 2: Responsible AI Practices - Module 1, Section 5, Lesson 2: Responsible AI Practices Module 2: Python Programming for Data Science Section 1: Python Basics - Lesson 1: Setting Up the Python Environment - Module 2, Section 1, Lesson 1: Setting Up the Python Environment - Lesson 2: Basic Python Syntax and Operations - Module 2, Section 1, Lesson 2: Basic Python Syntax and Operations Section 2: Data Structures in Python - Lesson 1: Understanding Lists, Tuples, and Dictionaries - Module 2, Section 2, Lesson 1: Understanding Lists, Tuples, and Dictionaries - Lesson 2: Practical Uses of Python Data Structures - Module 2, Section 2, Lesson 2: Practical Uses of Python Data Structures Section 3: Control Flow and Functions - Lesson 1: Using If Statements and Loops in Python - Module 2, Section 3, Lesson 1: Using If Statements and Loops in Python - Lesson 2: Defining and Using Functions - Module 2, Section 3, Lesson 2: Defining and Using Functions Section 4: Basics of Libraries for Data Science - Lesson 1: Introduction to NumPy - Module 2, Section 4, Lesson 1: Introduction to NumPy - Lesson 2: Working with Pandas for Data Manipulation - Module 2, Section 4, Lesson 2: Working with Pandas for Data Manipulation Section 5: Writing and Debugging Code - Lesson 1: Writing Clear and Maintainable Code - Module 2, Section 5, Lesson 1: Writing Clear and Maintainable Code - Lesson 2: Introduction to Debugging Techniques - Module 2, Section 5, Lesson 2: Introduction to Debugging Techniques Module 3: Data Visualization and Analysis Section 1: Data Visualization Principles - Lesson 1: Why Visualize Data? - Module 3, Section 1, Lesson 1: Why Visualize Data? - Lesson 2: Selecting the Appropriate Graphs and Charts - Module 3, Section 1, Lesson 2: Selecting the Appropriate Graphs and Charts Section 2: Introduction to Visualization Tools - Lesson 1: Getting Started with Matplotlib - Module 3, Section 2, Lesson 1: Getting Started with Matplotlib - Lesson 2: An Introduction to Seaborn - Module 3, Section 2, Lesson 2: An Introduction to Seaborn Section 3: Data Cleaning and Preparation - Lesson 1: Understanding the Importance of Data Cleaning - Module 3, Section 3, Lesson 1: Understanding the Importance of Data Cleaning - Lesson 2: Basic Data Preprocessing Techniques - Module 3, Section 3, Lesson 2: Basic Data Preprocessing Techniques Section 4: Exploratory Data Analysis (EDA) - Lesson 1: Identifying Trends and Patterns in Data - Module 3, Section 4, Lesson 1: Identifying Trends and Patterns in Data - Lesson 2: Transforming and Summarizing Data - Module 3, Section 4, Lesson 2: Transforming and Summarizing Data Section 5: Case Study in Data Visualization - Lesson 1: Step-by-Step Data Visualization Process - Module 3, Section 5, Lesson 1: Step-by-Step Data Visualization Process - Lesson 2: Interpreting Visualization Results - Module 3, Section 5, Lesson 2: Interpreting Visualization Results Module 4: Introduction to Machine Learning Section 1: Machine Learning Basics - Lesson 1: What Is Machine Learning? - Module 4, Section 1, Lesson 1: What Is Machine Learning? - Lesson 2: Overview of Different Types of Machine Learning - Module 4, Section 1, Lesson 2: Overview of Different Types of Machine Learning Section 2: Preparing Data for Machine Learning - Lesson 1: Understanding Data Splitting: Training versus Testing - Module 4, Section 2, Lesson 1: Understanding Data Splitting: Training versus Testing - Lesson 2: Fundamentals of Feature Selection - Module 4, Section 2, Lesson 2: Fundamentals of Feature Selection Section 3: Introduction to Supervised Learning - Lesson 1: Basics of Regression Models - Module 4, Section 3, Lesson 1: Basics of Regression Models - Lesson 2: Understanding Classification Methods - Module 4, Section 3, Lesson 2: Understanding Classification Methods Section 4: Building a Simple Machine Learning Model - Lesson 1: Creating a Basic Model with Python - Module 4, Section 4, Lesson 1: Creating a Basic Model with Python - Lesson 2: Evaluating Model Performance - Module 4, Section 4, Lesson 2: Evaluating Model Performance Section 5: Improving Machine Learning Models - Lesson 1: Recognizing Common Errors in Model Building - Module 4, Section 5, Lesson 1: Recognizing Common Errors in Model Building - Lesson 2: Introduction to Basic Model Tuning Techniques - Module 4, Section 5, Lesson 2: Introduction to Basic Model Tuning Techniques Module 5: AI Projects and Ethical Considerations Section 1: Planning AI Projects - Lesson 1: Defining Project Goals and Objectives - Module 5, Section 1, Lesson 1: Defining Project Goals and Objectives - Lesson 2: Identifying Key Data Requirements - Module 5, Section 1, Lesson 2: Identifying Key Data Requirements Section 2: Exploring AI Tools and Platforms - Lesson 1: Introduction to TensorFlow Basics - Module 5, Section 2, Lesson 1: Introduction to TensorFlow Basics - Lesson 2: Overview of Open-Source AI Tools - Module 5, Section 2, Lesson 2: Overview of Open-Source AI Tools Section 3: Mini Projects in Artificial Intelligence - Lesson 1: Planning and Selecting a Mini Project - Module 5, Section 3, Lesson 1: Planning and Selecting a Mini Project - Lesson 2: Initial Model Building for a Mini Project - Module 5, Section 3, Lesson 2: Initial Model Building for a Mini Project Section 4: Presenting and Interpreting AI Results - Lesson 1: Creating Effective Reports for AI Projects - Module 5, Section 4, Lesson 1: Creating Effective Reports for AI Projects - Lesson 2: Communicating Data Findings Clearly - Module 5, Section 4, Lesson 2: Communicating Data Findings Clearly Section 5: Ethical AI and Future Directions - Lesson 1: Exploring Ethical Considerations in AI - Module 5, Section 5, Lesson 1: Exploring Ethical Considerations in AI - Lesson 2: An Overview of Future Trends in AI and Data Science - Module 5, Section 5, Lesson 2: An Overview of Future Trends in AI and Data Science