Free AI-assisted K12 Learning

Introduction to Statistics


 Description : This course introduces foundational statistical concepts through hands‑on data collection and analysis projects, teaching students to interpret and visualize information using real‑world data sets.

Category : Math
Age : 12+
Difficulty Level : Normal

 Curriculum :
          Module 1: Foundations of Statistics

Section 1: Introduction to Statistics  
- Lesson 1: Defining Statistics  
  - Module 1, Section 1, Lesson 1: Defining Statistics  
- Lesson 2: Role of Statistics in Everyday Life  
  - Module 1, Section 1, Lesson 2: Role of Statistics in Everyday Life  

Section 2: Data Collection Basics  
- Lesson 1: Methods of Data Collection  
  - Module 1, Section 2, Lesson 1: Methods of Data Collection  
- Lesson 2: Ethics in Data Collection  
  - Module 1, Section 2, Lesson 2: Ethics in Data Collection  

Section 3: Types of Data  
- Lesson 1: Quantitative vs Qualitative Data  
  - Module 1, Section 3, Lesson 1: Quantitative vs Qualitative Data  
- Lesson 2: Discrete vs Continuous Data  
  - Module 1, Section 3, Lesson 2: Discrete vs Continuous Data  

Section 4: Organizing and Summarizing Data  
- Lesson 1: Tabular Representations  
  - Module 1, Section 4, Lesson 1: Tabular Representations  
- Lesson 2: Basic Data Summaries  
  - Module 1, Section 4, Lesson 2: Basic Data Summaries  

Section 5: Introduction to Statistical Projects  
- Lesson 1: Hands‑On Data Collection  
  - Module 1, Section 5, Lesson 1: Hands‑On Data Collection  
- Lesson 2: Introduction to Data Analysis  
  - Module 1, Section 5, Lesson 2: Introduction to Data Analysis  


Module 2: Data Collection Techniques

Section 1: Surveys and Questionnaires  
- Lesson 1: Designing Effective Surveys  
  - Module 2, Section 1, Lesson 1: Designing Effective Surveys  
- Lesson 2: Sampling Methods Basics  
  - Module 2, Section 1, Lesson 2: Sampling Methods Basics  

Section 2: Observational Studies  
- Lesson 1: Recording Observations Accurately  
  - Module 2, Section 2, Lesson 1: Recording Observations Accurately  
- Lesson 2: Recognizing and Minimizing Bias  
  - Module 2, Section 2, Lesson 2: Recognizing and Minimizing Bias  

Section 3: Experimental Data Collection  
- Lesson 1: Understanding Variables  
  - Module 2, Section 3, Lesson 1: Understanding Variables  
- Lesson 2: Control and Randomization  
  - Module 2, Section 3, Lesson 2: Control and Randomization  

Section 4: Utilizing Real‑World Data Sources  
- Lesson 1: Exploring Public Data Sets  
  - Module 2, Section 4, Lesson 1: Exploring Public Data Sets  
- Lesson 2: Introduction to Data Privacy  
  - Module 2, Section 4, Lesson 2: Introduction to Data Privacy  

Section 5: Practical Field Studies  
- Lesson 1: Conducting Field Studies  
  - Module 2, Section 5, Lesson 1: Conducting Field Studies  
- Lesson 2: Recording and Organizing Field Data  
  - Module 2, Section 5, Lesson 2: Recording and Organizing Field Data  


Module 3: Data Representation

Section 1: Graphical Representations – Part I  
- Lesson 1: Creating Bar Graphs  
  - Module 3, Section 1, Lesson 1: Creating Bar Graphs  
- Lesson 2: Interpreting Bar Graphs  
  - Module 3, Section 1, Lesson 2: Interpreting Bar Graphs  

Section 2: Graphical Representations – Part II  
- Lesson 1: Constructing Line Graphs  
  - Module 3, Section 2, Lesson 1: Constructing Line Graphs  
- Lesson 2: Understanding Line Graph Trends  
  - Module 3, Section 2, Lesson 2: Understanding Line Graph Trends  

Section 3: Pie Charts and Pictograms  
- Lesson 1: Designing Pie Charts  
  - Module 3, Section 3, Lesson 1: Designing Pie Charts  
- Lesson 2: Reading and Interpreting Pictograms  
  - Module 3, Section 3, Lesson 2: Reading and Interpreting Pictograms  

Section 4: Histograms and Frequency Distributions  
- Lesson 1: Building Histograms  
  - Module 3, Section 4, Lesson 1: Building Histograms  
- Lesson 2: Analyzing Frequency Distributions  
  - Module 3, Section 4, Lesson 2: Analyzing Frequency Distributions  

Section 5: Introduction to Software Tools for Visualization  
- Lesson 1: Overview of Statistical Software  
  - Module 3, Section 5, Lesson 1: Overview of Statistical Software  
- Lesson 2: Basic Data Visualization Techniques  
  - Module 3, Section 5, Lesson 2: Basic Data Visualization Techniques  


Module 4: Data Analysis Fundamentals

Section 1: Measures of Central Tendency  
- Lesson 1: Calculating the Mean  
  - Module 4, Section 1, Lesson 1: Calculating the Mean  
- Lesson 2: Exploring the Median and Mode  
  - Module 4, Section 1, Lesson 2: Exploring the Median and Mode  

Section 2: Measures of Dispersion  
- Lesson 1: Understanding Range and Variance  
  - Module 4, Section 2, Lesson 1: Understanding Range and Variance  
- Lesson 2: Introduction to Standard Deviation  
  - Module 4, Section 2, Lesson 2: Introduction to Standard Deviation  

Section 3: Basics of Probability  
- Lesson 1: Fundamental Concepts of Probability  
  - Module 4, Section 3, Lesson 1: Fundamental Concepts of Probability  
- Lesson 2: Simple Probability Experiments  
  - Module 4, Section 3, Lesson 2: Simple Probability Experiments  

Section 4: Interpreting Trends and Outliers  
- Lesson 1: Identifying Data Trends  
  - Module 4, Section 4, Lesson 1: Identifying Data Trends  
- Lesson 2: Recognizing and Handling Outliers  
  - Module 4, Section 4, Lesson 2: Recognizing and Handling Outliers  

Section 5: Hands‑On Data Analysis Project  
- Lesson 1: Collecting and Preparing a Data Set  
  - Module 4, Section 5, Lesson 1: Collecting and Preparing a Data Set  
- Lesson 2: Analyzing and Presenting Findings  
  - Module 4, Section 5, Lesson 2: Analyzing and Presenting Findings  


Module 5: Statistical Thinking in the Real World

Section 1: Case Studies in Everyday Statistics  
- Lesson 1: Exploring Urban Data Analysis  
  - Module 5, Section 1, Lesson 1: Exploring Urban Data Analysis  
- Lesson 2: Examining Environmental Data  
  - Module 5, Section 1, Lesson 2: Examining Environmental Data  

Section 2: Ethics and Responsibility in Statistics  
- Lesson 1: Understanding Data Privacy and Consent  
  - Module 5, Section 2, Lesson 1: Understanding Data Privacy and Consent  
- Lesson 2: Avoiding Data Misinterpretation  
  - Module 5, Section 2, Lesson 2: Avoiding Data Misinterpretation  

Section 3: Critical Thinking with Data  
- Lesson 1: Evaluating Statistics in Media  
  - Module 5, Section 3, Lesson 1: Evaluating Statistics in Media  
- Lesson 2: Recognizing Bias and Misleading Information  
  - Module 5, Section 3, Lesson 2: Recognizing Bias and Misleading Information  

Section 4: Communicating Statistical Findings  
- Lesson 1: Basics of Report Writing with Data  
  - Module 5, Section 4, Lesson 1: Basics of Report Writing with Data  
- Lesson 2: Creating Effective Data Visuals for Presentations  
  - Module 5, Section 4, Lesson 2: Creating Effective Data Visuals for Presentations  

Section 5: Final Project and Course Review  
- Lesson 1: Planning Your Final Statistical Project  
  - Module 5, Section 5, Lesson 1: Planning Your Final Statistical Project  
- Lesson 2: Review, Reflection, and Assessment  
  - Module 5, Section 5, Lesson 2: Review, Reflection, and Assessment